EVALUATING CERAMIC MATERIALS

Small-Scale Production

Burn Manufacturing's Jikokoa

- Over 200 000 stoves manufactured each year
- Average lifespan of 3-4 years in the field
- Strive to make each purchase last as long as possible

Durability Program

- Accelerated Testing (4x)
- Constant Charcoal Burning

SS304 CC before testing

DESIGN LAB

SS304 CC after an equivalent of 3 years' usage

- Oxidation
- Creep Deformation

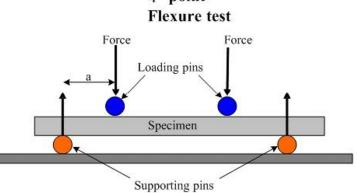
Ceramic Combustion Chambers

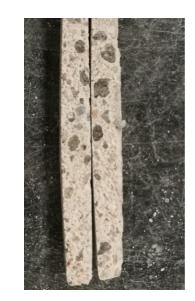
- Existing cookstoves with a ceramic combustion chamber show this is a viable option
- The most affordable ceramic materials need to be mixed on-site
- How do we verify our ceramic parts' quality and consistency?

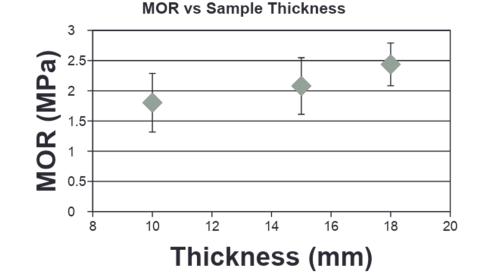
Kenya Ceramic Jiko

Testing Protocols – Thermal Fatigue

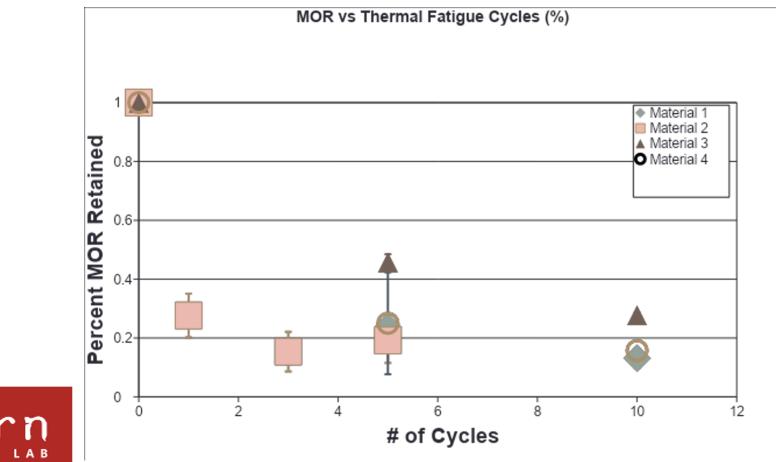
- Make the tests as harsh as possible:
 - Quench the sample in room temperature water
 - Place the sample immediately back into the kiln
 - Repeat until failure




Testing Protocols – Modulus of Rupture (MOR) ^{4-point} Flexure test


- Designed for Brittle Materials
- $MOR = \frac{3*Force*Length}{4*Width*Thickness^2}$

SIGN



Testing Protocols – Loss of Strength

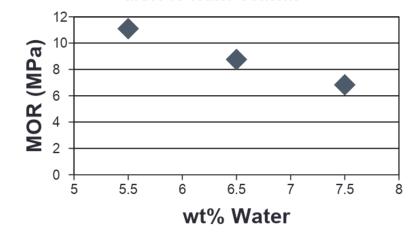
DESIGN

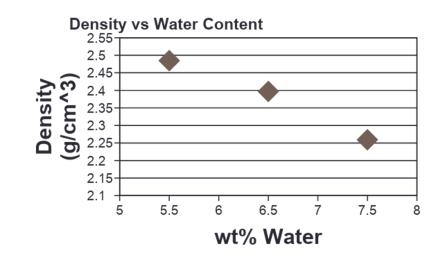
Measure the MOR after x number of Thermal Fatigue cycles

Sample Preparation

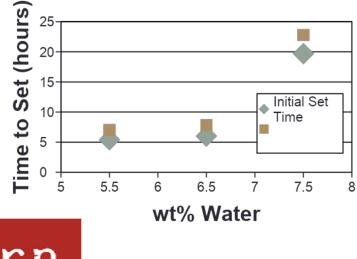
- Mixing
 - Water Content
 - Mixing Method
- Moulding
 - Mould Material
 - Mould Shape
 - Release Agent
- Firing
 - Ramp Rate
 - Maximum Temperature
 - Hold Time

Impact of Water Content


Casting Water (%)	5.5	6.5	7.5
230°F Density (pcf)	155.3	149.8	1 <mark>41.2</mark>
230°F MOR (psi)	1610	1270	990
Initial Set (hours)	5.4	6.0	19.7
Final Set (hours)	7.0	7.8	22.8


Effect of water content on the properties of a general-use castable

D


SIGN

LAB

Set Time vs Water Content

MOR vs Water Content

Impact of Release Agent

remove

- Affects Outer Porosity
- Affects Ease of Removal
- Does not seem to affect MOR

Removal Failure

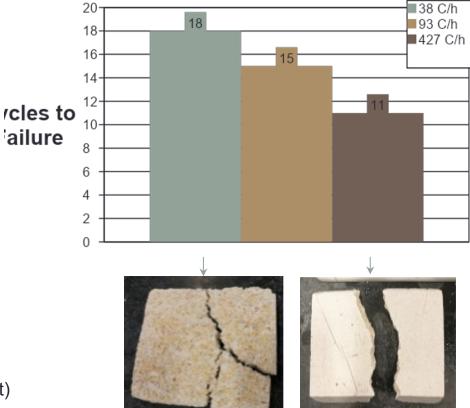
5 MOR (MPa) 3 2 1 0-Super-Lube CRC Smooth-On Difficult to Difficult to

remove

MOR VS Release Agent

Easy to remove

Impact of Firing Protocol


MOR VS Ramp Rate 7 Material 1, Fired to 980 C 6 MOR (MPa) 5 3. 2 0. 150 200 250 300 350 50 100 400 450 0 Ramp Rate (C/h)

Material 1, Fired to 980 C (Left) and 1200 C (Right)

DESIGN

LAB

Thermal Fatigue VS Ramp Rate, Material 1, Fired to 1200 C

Conclusion

- To extend the customers' use of their Jikokoa, we have begun to explore ceramic materials as a replacement combustion chamber material.
- We have identified tools to evaluate some of these materials' physical properties.
- We have used these tools to monitor the effect manufacturing procedures have on our parts.

