

IMPROVED SHEA NUT ROASTER ETHOS 2019

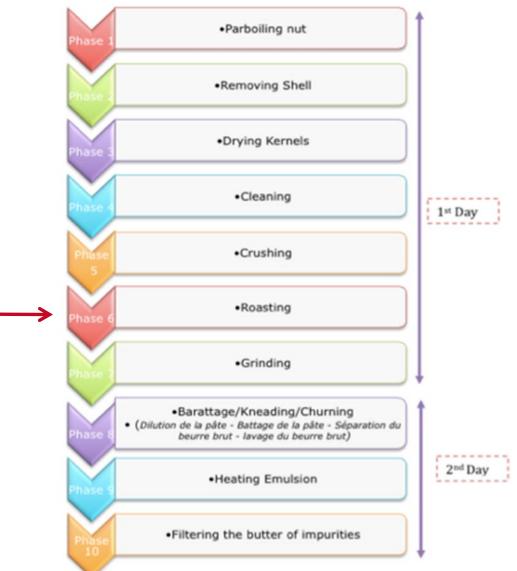
DURN By Brian Gylland, Peter Hamlin, & Paul Means


Agenda

- 1. Background & Objectives
- 2. **Development Overview**
- 3. Initial Field Testing
- 4. **Baseline Laboratory Testing**
- 5. **Development Process**
- 6. Next Steps

Project Background

- □ Shea is a fruit that grows on trees scattered throughout the shea belt.
- There is no organized farming of shea trees, and the process is quite extensive with many energy, health, and ergonomic issues.
- □ Women are the primary processors



Project Objectives

- □ Acceptability
- Economics
- □ Productivity
- 🗆 Health
- Durability
- Performance

🗆 Quality

Figure 1: The Shea Butter Production Process

Development Overview - Schedule

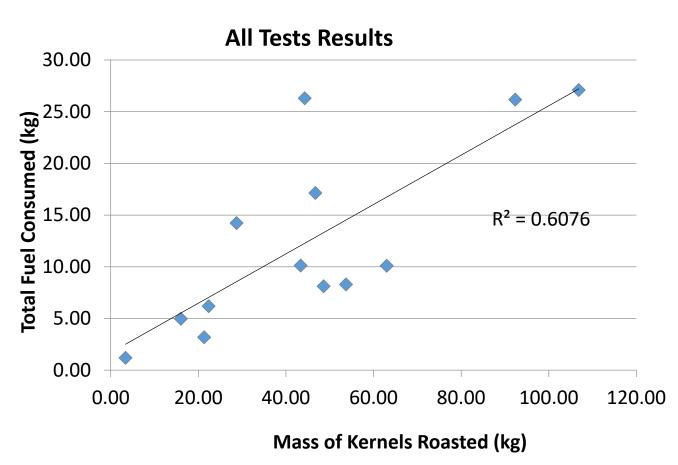
TASK	2018 2019										20	20	
Project Scoping initiation and planning													
Baseline Field Testing													
Conceptual designs (P1) Concept development Prototype design, build Test Field / User evaluations													
Improved designs(P2)													
Final Design for Manufacturing (P3)													
Pilot Production & Evaluation													
Durability testing													
Manufacturing System Design													
Production Prep													
PRODUCT LAUNCH													\bigstar

Initial Field Testing

Initial Field Testing – continued

Objective:

- Gather baseline measurements on fuel consumption, emissions, and productivity for the 2 primary methods for roasting shea kernels
- 13 different sites
 - 10 in Tamale, 3 in Wa
 - 6 co-ops, 7 individual processors


15 tests

- 10 drum roasters
- **5** pot and paddle

Initial Field Testing – continued

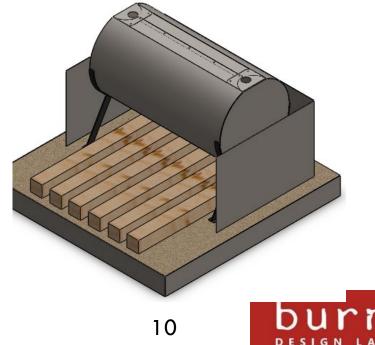
- Variability due to difficulty weighing fuel (wood and shea nut residue) and shea kernels.
- Measuring fuel moisture (hand held conductivity meter)
- Measuring residual char

Initial Field Testing – continued

What did we learn?

- The Drum has a significantly higher capacity than the Pot roaster
- The Specific fuel consumption is nearly identical for both roasters
- The average final nut temperature (independent or roaster type) was 136°C.
- No kernels were ever discarded due to burning or over roasting.
- No consistent method for determining when roasting is completed.
- Roasting efficiency is very low (<10%)</p>

Baseline Laboratory Testing



Issues with simulating in the lab

- Roaster is too large to fit in testing hood.
- No shea kernels available to roast
- Fuel is very irregular

Simulation Simplifications

- Scaled to 50% by volume (79% by length)
- Heat water vs. Shea Kernels
- Fixed drum vs. rotating drum
- Uniform wood fuel

Baseline Laboratory Testing - continued

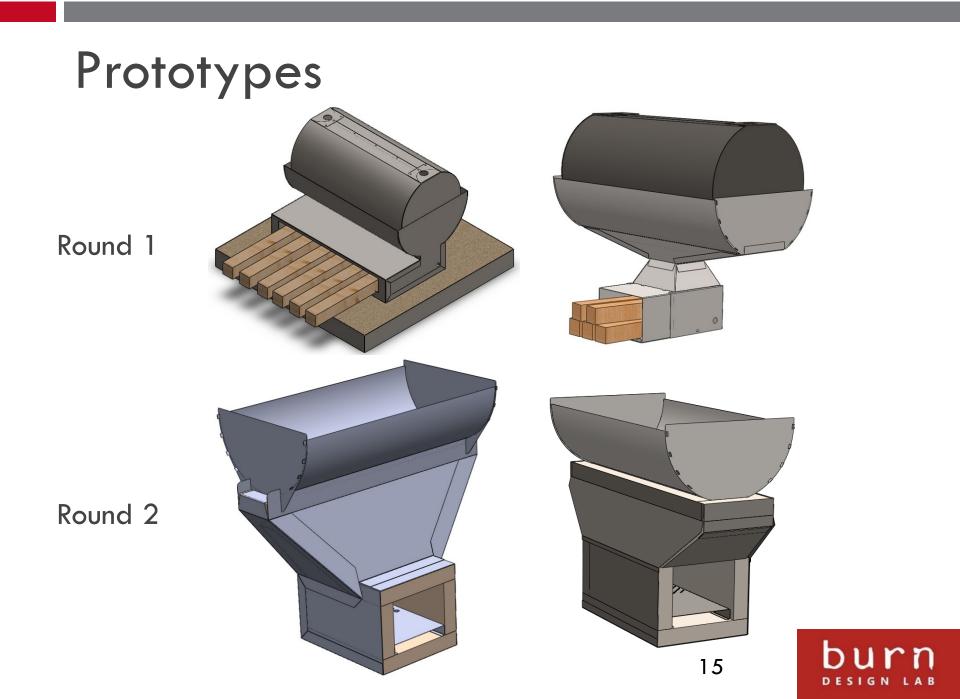
LAB

Baseline Laboratory Test Results

Test #		High Power Efficiency, %	Time to Boil, min	Dry Fuel Consumed, g	HP Output, kW	HP CO, g/MJd	Char after Cold Start, g
	1	14.8%	27	1223	14.7	9.2	100
	3	15.4%	32	1147	11.6	10.9	92
	4	16.2%	28	1093	12.8	10.2	94
	5	17.4%	29	1017	11.2	10.4	84
	6	14.5%	31	1232	13.0	12.9	163
Average		15.6%	29	1142	12.7	10.7	107
Maximum		17.4%	32	1232	14.7	12.9	163
Minimum		14.5%	27	1017	11.2	9.2	84
COV, %		7.56	7.0	8	10.7	12.6	30

Preliminary Design Process

						-									-				_						-	
	Α	В	c	D	E	F	G	н	· ·	л к	L	м	N	0	P	Q	R	S	т	U	V	W	х	Y	Z	AA
1		Sheet Use See Note	Parameter Scaling Factor Input:		10	10	8	4	4 2	2 2	2	2	7							**Click the [+] or [-] button above column B to show/hide the scoring columns**						
2			Pass/Fail:	Υ.+	N -	N - 1	N - 1	4 + Y	* N	* N :	- N -	Ν	N *	N *	N - I	N - N	*									
3		Link to Design Brief	As Percentages:	0%	20%	20%	16%	8%	8% 4	96 4	6 49	6 49	6 1496	0%	0%	0%	0%									
4	1	<u>Baseline</u>	Design Parameter	Acceptability	Economics	Health	B rgonomics	Productivity	Roast Quality	Maintenance	Durability	Verschility	Fuel Use	ttern 12	ltem 13	ttern 14	Item 15	Scaled A Score		Key Features	Percieved Benefits	Potential Risks	BOM Estimation (1-5)	Shea Batch Capacity	Additional Comments	Next Steps
5 6 7 8 9 10			Whit Carol Serwaa Kaci Brian Paul	3 4 3 4 4 3	2 4 3 1	1 1 3 1 1	1 1 3 2 2 2	4 3 3 4 3	4 4 4 4 4	5 4 4 5	2 4 1 3 2 3	4 (3 2.(3 (2 (4 1 5 1 5 3 1 3 1 2 1					2.		Enclosed drum, metal handles,open fire chamber with 3-sided mild steel enclosure	increases productivity over banku pot, enclosed slightly more than banku pot	Smoke & heat exposure, burns, heavy to load and unload (requires 2 people), no more fuel efficient than banku pot	2	10-25 bowls of shea	[Text]	Example: Create Prototype, test heat transfer properties, with lab tests.
11 12 13 14			Peter Raw Average (1-5) passfail Weighted Totals	3 3.4 0	1 2.1	0			4 3.9 4 0 5.4: 8.	5 I.3 1. 0	2	4 2.		0 0.0 0	0 0.0 0	0 0.0 0	0 0.0 0	42% (Ch						nuts		
15	2	Wok over Rocket Stove	Design Parameter	Acceptability	Economics	Health	Ergonomics	Productivity	Roast Quality	Maintenance	Durability	Versatility	Fuel Use				Item 15	Scaled A Score		Key Features	Percieved Benefits	Potential Risks	BOM Estimation (1-5)	Shea Batch Capacity	Additional Comments	Next Steps
16 17 18 19 20 21			Whit Carol Serwaa Kaci Brian Paul	2 3 3 3 3 3 2	3 2 3 4	3 3 3 3 2	3 2 3 4 1	1 1 1 1 1	4 5 4 4 4 3	2 3 3 2	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 (3 (4 (4 (2 4 5 4 5 5 4 4 4 4					3.		Large shallow round pot (pan) over a side fed rocket stove or a batch fed stove for shea "could be used for other processing steps	Fast roasting for small batch or nuts, high efficiency and low emissions, loaded and unloaded by 1 person, a rocket stove would be straightforward for BDL to design and	Low productivity does not meet co-op needs or match roasting drum	2	<10 bowls	Rocket stove would likely be a totally new design. Stability would be a key consideration, as would the ability to handle larger wood.	CAD concept
22 23 24 25			Peter Raw Average (1-5) passfail Weighted Totals	3 2.7 0	3 2.9 0 28.5	4 3.0 0 30	3 2.7 0 21.7	1 1.0 0 4	4 4.0 2 0 16 5.1	-		-	5 4 3 4.0 0 0 7 28	-	-	0 0.0 0	0 0.0 0	61% (optimize					
26	3	Batch-fed Shea Cake Burner	Design Parameter	Acceptability	Economics	Health	Er gonomics	Productivity	Roast Quality	Maintenance	Durability	Versatility	Fuel Use	ttem 12	ttern 13	ltern 14	ltem 15	Scaled A Score		Key Features	Percieved Benefits	Potential Risks	BOM Estimation (1-5)	Shea Batch Capacity	Additional Comments	Next Steps
27 28 29 30 31 32		[image]	Whit Carol Serwaa Kaci Brian Paul	2 2 3 3 3	3 3 2 3	4 2 2 2 4	4 3 3 3 4	3 1 2 1 3	4 5 4 2 3	1 1 1 1	3 3 2 3 3 3	3 (3 (3 (3 (2 5 3 5 3 5 3 5 3 5 3 1					3.		A batch feed stove, similar to a charcoal stove, designed to burn shea cake briquettes (in the shape of balls)	Eliminates use of other fuels in roasting provides consistent time and energy delivered to kernels, smaller quantity requires only 1 person.	cake is unknown, cost to briquette is unknown, consistency of shea cake is unknown. Risk that batch feeding shea oake will not work- it may result in an	2	ble to	similar efficiency to other burners, and so burns much more shes cake per kn of	1) attempt to burn shea cake in batch mode - compare to charcoal. 2)Research Brigette making, determine HHV of shea cake
	+	■ 15 Sheet1 -	Sorted Scores Matr	ix –	1	- 2	2 -	3 -	4	T	5 🔻	6	- 9	Ψ.	7 -	15	Ψ.	8 -	10 -	11 - 12 - 13	<u>▼ 14 ▼ 16 ▼</u>	17 - 18 - 19	9 - 20 -	21 👻	22 - 23 -	24 - 25 - 26


Preliminary Design Process

A	В	С	D	E	F	G	н	I	J	к	L	М	N	S	т	U	V
		Scaling Factor		10	10	8	4	4	2	2	2	2	7				
		Pass/Fail?	Y	N	N	N	N	Y	N	N	N	N	N	Cooled Average			
, . .		Design Parameter 📼	Accept =	Econon \Xi	Health \Xi	Ergono	Product	Roast C =	Fuel Fle =	Mainten \Xi	Durabili \Xi	Versatil \Xi	Fuel Us \Xi	Scaled Average Score (1-5)	$\overline{\tau}$	Ŧ	Pass/Fail
4	Gari Elephant		2.9	2.4	4.7	2.9	3.1	4.0	3.1	4.3	3.6	4.4	3.9	3.5	71%	(+29%)	Chill
0	Improved Combustion Chamber [F	EATURE]	3.8	3.3	3.8	3.0	3.2	3.7	3.7	3.0	3.2	4.5	4.2	3.5	71%	(+28%)	Chill
1	Front-Fed Enclosed drum w/top sta	ack and pedal driv	3.4	2.6	4.6	3.4	3.3	3.7	3.6	2.0	2.6	3.8	3.9	3.5	70%	(+27%)	Chill
2	Front Fed 3-chamber enclosed dru	m w/ side-stack	3.1	2.7	4.6	2.6	3.1	3.7	3.7	2.4	2.6	3.5	4.1	3.4	68%	(+26%)	Chill
в	Stacked Drums w/exhaust stack		3.7	2.1	4.1	2.7	4.7	3.8	3.4	2.0	3.0	3.4	4.5	3.4	68%	(+26%)	Chill
9	Retrofitted Enclosure		3.9	3.0	4.6	3.0	3.3	3.7	3.7	2.7	2.7	3.6	2.4	3.3	67%	(+24%)	Chill
6	Batch Fed Enclosed Drum Roaster	[2.9	1.9	4.9	2.4	3.4	3.7	3.7	1.7	2.7	3.6	4.3	3.3	66%	(+24%)	Chill
0	Banku Pot Cookstove		3.1	3.4	3.4	2.6	2.1	3.9	2.9	2.7	3.4	4.3	4.0	3.3	66%	(+23%)	Chill
3	Side fed enclosed drum w/ top-stat	<u>ck</u>	3.1	2.3	4.4	2.3	3.0	3.7	3.3	2.3	2.6	3.5	4.0	3.2	64%	(+22%)	Chill
2	Continuous Feed Auger		2.3	1.1	4.3	3.6	4.7	3.6	3.9	1.6	2.4	1.7	4.0	3.2	64%	(+22%)	Chill
,	Oven Type		2.3	2.1	4.1	3.7	2.6	3.7	3.1	2.1	2.7	2.9	3.1	3.2	63%	(+21%)	Chill
4	Crank-driven intake fan [FEATURE	3	3.3	2.0	4.4	1.9	3.2	3.9	3.9	1.1	2.6	3.5	4.3	3.1	63%	(+20%)	Chill
3	Batch-fed Shea Cake Burner		2.8	3.0	2.8	3.3	2.3	3.7	0.8	2.7	3.2	2.8	4.3	3.1	62%	(+19%)	Chill
2	Wok over Rocket Stove		2.7	2.9	3.0	2.7	1.0	4.0	2.6	2.7	3.4	4.3	4.0	3.0	61%	(+18%)	Chill
6	Sand Medium [FEATURE]		2.1	3.7	2.1	2.1	3.7	4.6	3.9	2.4	2.9	2.5	2.7	3.0	59%	(+17%)	Chill
7	Whole Nut Roasting [FEATURE]		2.3	4.1	1.6	2.6	4.6	3.4	4.3	2.4	3.0	3.2	1.7	2.9	58%	(+16%)	Chill
9	Twin Nut Roaster		3.0	1.9	3.9	1.9	4.0	3.6	5.0	1.7	2.3	3.2	2.7	2.9	57%	(+15%)	Chill
5	Treadle-Driven Rotation [FEATURE	<u>=</u>]	3.3	2.5	2.5	4.2	3.2	3.8	4.3	1.7	2.3	3.4	1.5	2.8	57%	(+15%)	Chill
5	Kitchen Aide		2.6	2.6	3.4	2.3	1.7	3.0	2.4	2.7	2.6	2.7	3.4	2.8	56%	(+13%)	Chill
8	Tip-empty drum [FEATURE]		2.9	2.1	1.9	3.9	3.7	3.7	4.3	2.1	2.9	3.4	1.7	2.7	54%	(+12%)	Chill
3	Shea Cake Briquette Press		3.0	2.3	1.5	2.6	3.3	3.8	3.5	2.3	3.5	2.9	3.8	2.7	54%	(+11%)	Chill
24	Improved Drum Door [FEATURE]		4.5	2.7	1.8	3.0	3.3	3.7	4.3	2.2	2.8	3.3	1.1	2.5	51%	(+9%)	Chill
5	Drum Transport System [FEATURE	<u>=</u>]	3.2	2.0	1.6	3.6	3.2	3.8	4.4	2.0	3.0	3.3	1.0	2.5	49%	(+7%)	Chill
1	Cantilevered Fuel [FEATURE]		2.3	2.4	1.3	1.9	3.1	3.7	2.9	2.4	2.9	3.6	2.9	2.4	48%	(+6%)	Chill
1	Baseline		3.4	2.1	1.1	1.9	3.3	3.9	4.3	1.9	3.0	3.1	1.0	2.1	42%	(+ 0)	Chill
	■ 15 Sheet1 - Sorted	Scores Matrix	- 1 -	2 - 3 -	4 - 5	- 6 -	9 - 7 -	15 - 8	- 10 -	11 - 1	2 - 13 -	14 -	16 - 17	▼ 18 ▼ 19 ▼ 2	20 - 2	1 - 22	2 - 23

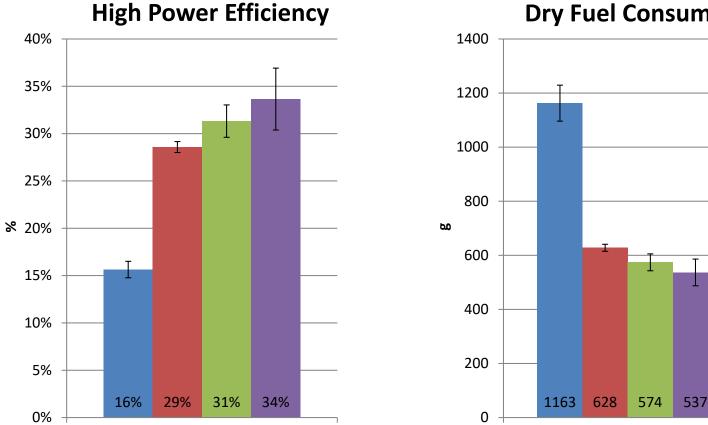
Ь

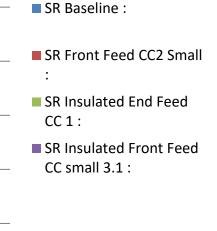
DESIGN LAB

n

Prototypes

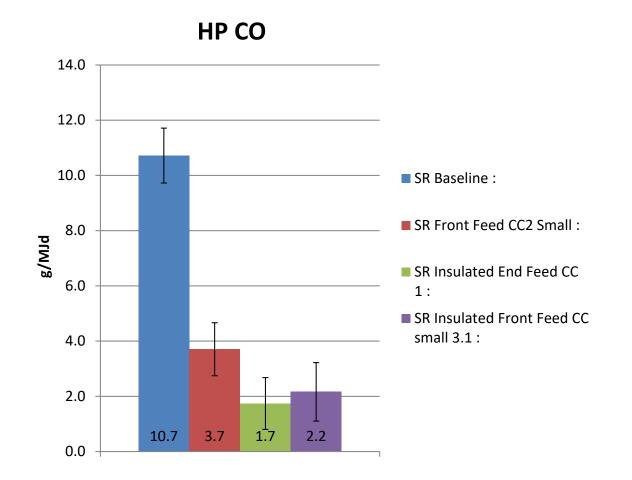
Round 1




Round 2

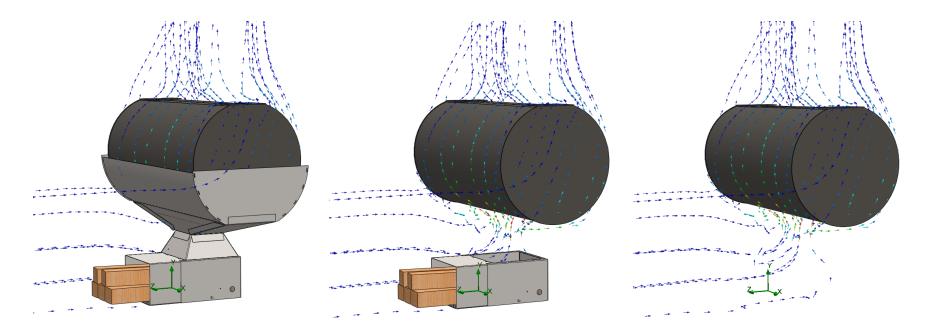
burn DESIGN LAB

Testing Results



Dry Fuel Consumed

Testing Results

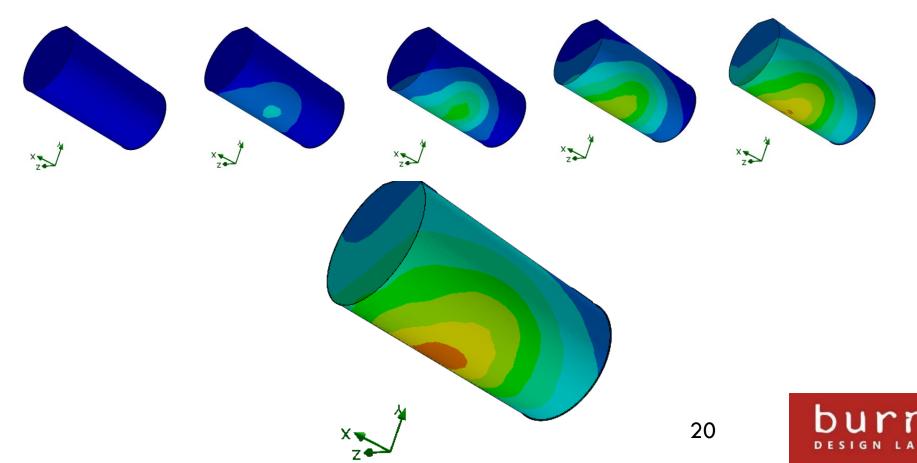

burn DESIGN LAB

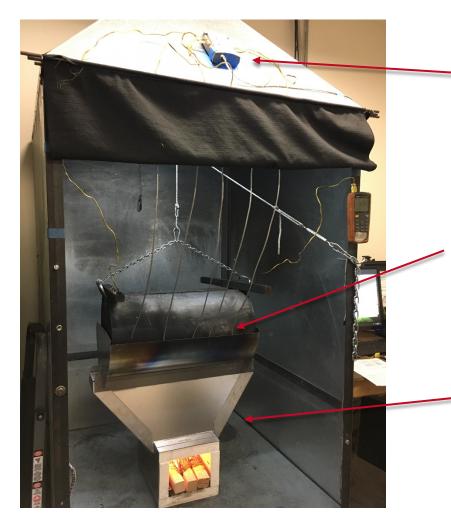
18

Development Process - Flow Simulation

Research Phase

Assist in rapid iteration for heat distribution

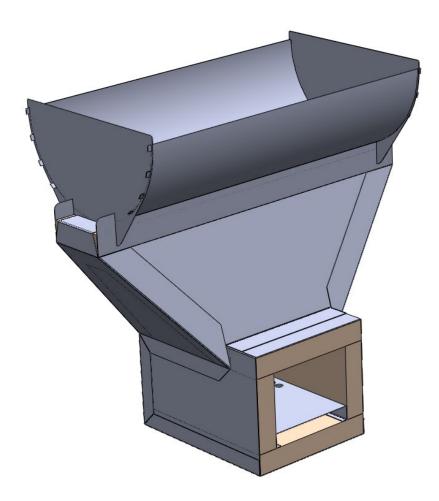


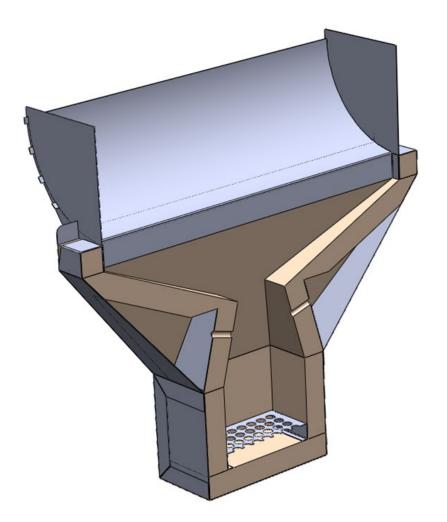


Development Process - Flow Simulation

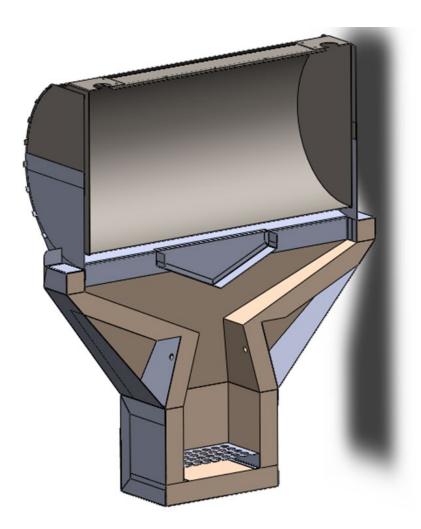
Research Phase

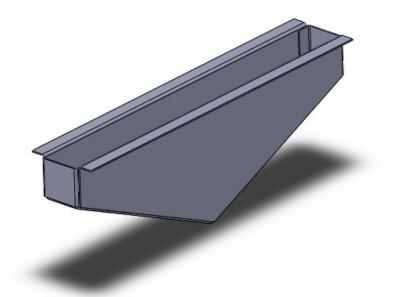
Assist in rapid iteration for heat distribution

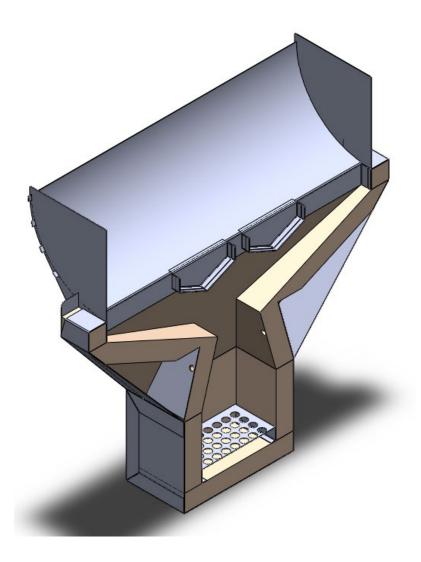


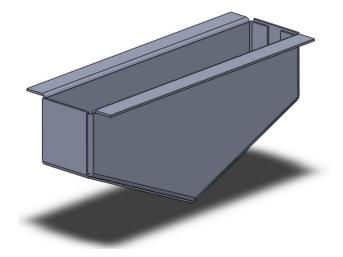

DAQ – 6 channel

5 New High-Temp TC (fixed to drum bottom)

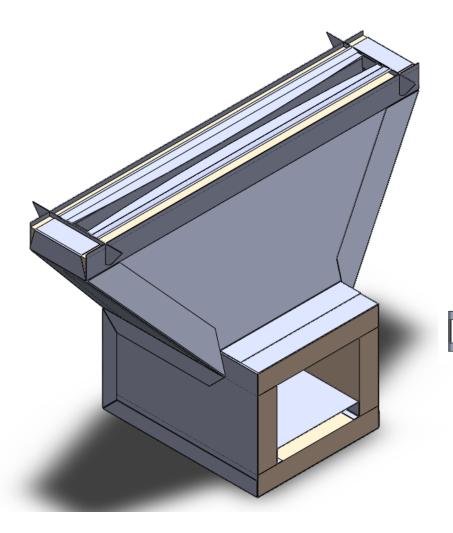

Same Roaster Setup

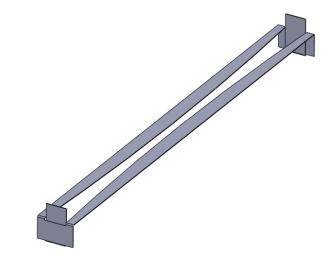




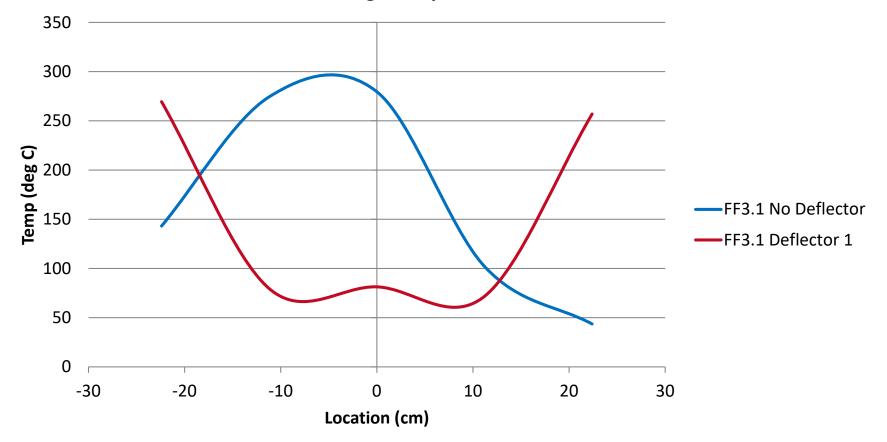


24 cm deflector

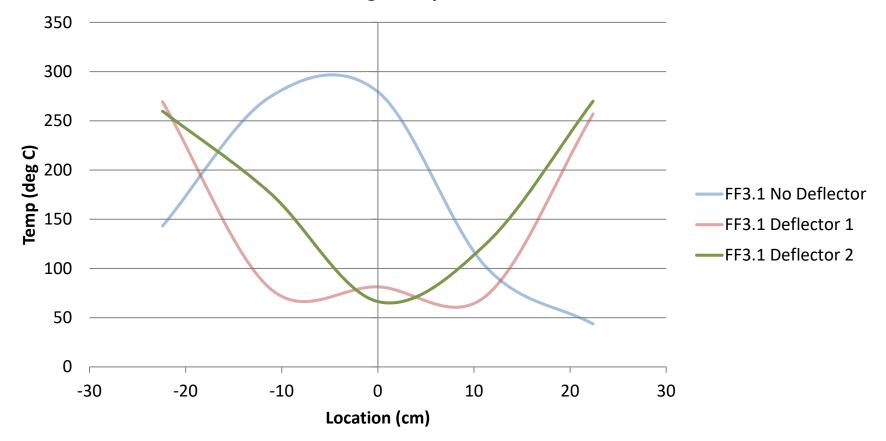




2 x 12 cm Deflector with 3 cm gap at center

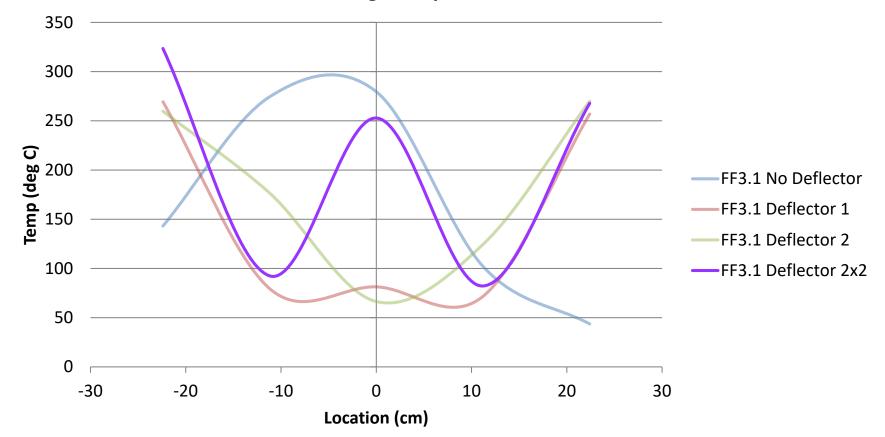


Deflector 3 – same open area as Deflector 1 constrained by end points of hour glass shape



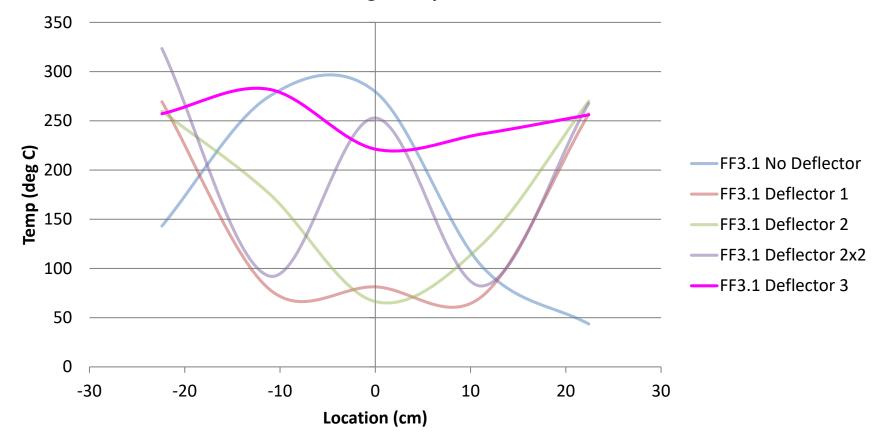
Average Temp Across Drum

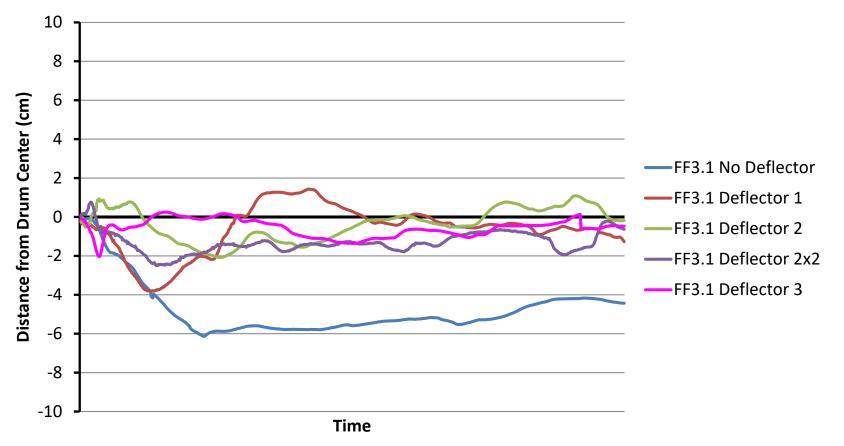
Average Temp Across Drum



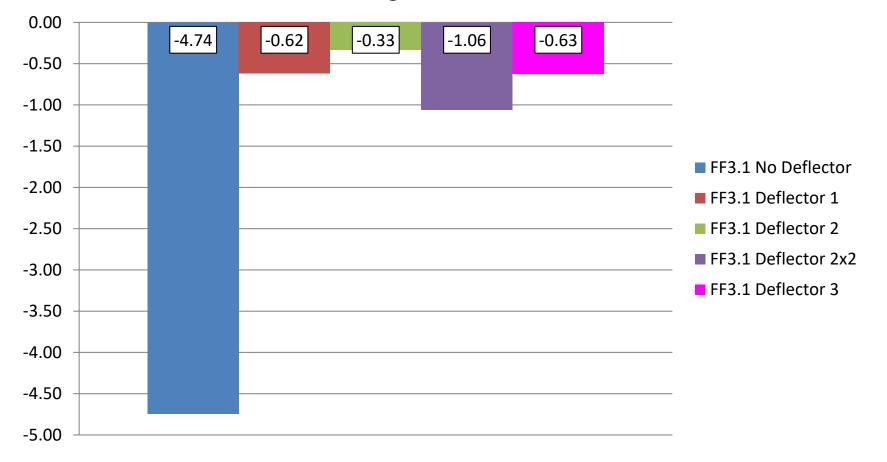
DE

SIGN

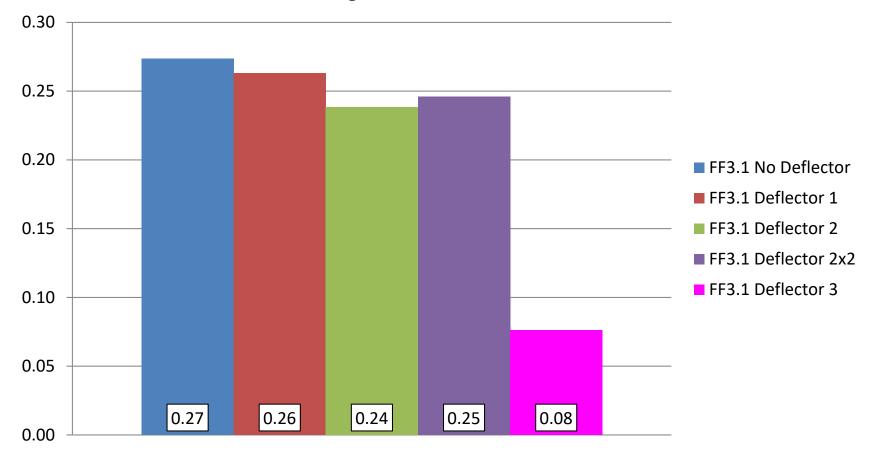

Average Temp Across Drum


SIGN

Average Temp Across Drum



SIGN


Center of Heat – Front Feed CC Small 3.1 Deflector

Average Center of Heat

Average Coefficient of Variation

Next Steps

- Scaling up of Prototypes and sending to Ghana for user feedback and verification of performance.
 - Structural design
 - Material selection for performance/cost/durability
 - Implementation strategy and logistics

□Thank You!

