Carbon Tools: In-Field Thermal Efficiency & Wood-to-Charcoal Conversion Factor

Jaden Berger - Aprovecho Research Center, <u>jaden@aprovecho.org</u> Jessie Urban - Oregon State University, <u>urbanje@oregonstate.edu</u> Dr. Nordica MacCarty - Aprovecho Research Center & Oregon State University <u>nordica.maccarty@oregonstate.edu</u>

Research objectives

- Create in-field protocols to measure key inputs for carbon emissions reductions methodologies
- Make recommendations for direct measurements in the future as opposed to reliance on conservative defaults

Uncontrolled Cooking Efficiency Test

Motivation for the UCET

- Create a protocol to measure thermal efficiency in field under real cooking scenarios
 - Uncontrolled Cooking Efficiency Test (UCET)
 - Cook how you want
 - Cook what you want
 - Allows for normal shutdown procedures
- Use the UCET to quantify the efficiency of traditional cooking to compare to UNFCCC default values

Motivation for the UCET

UCET Methodology

- Sample Size
 - Implemented in Ghana, Malawi, and Kenya
 - Conducted 720 tests
 - 360 tests on traditional charcoal stoves
 - 360 tests on traditional wood stoves
- Household Selection
 - 30 surveys conducted in 30 households
 - 10 households selected per community
- Measures thermal efficiency using:
 - Fuel metrics
 - Change of weight and temperature of each ingredient
 - Specific heat of ingredients

Dregon State University College of Engineering

Results

Wood Stoves

Country	Average Thermal Efficiency [%]	Median Thermal Efficiency [%]	Ν	
Ghana	12.0 ± 5.0	11.2 ± 5.0	107	
Malawi	11.1 ± 5.3	10.0 ± 5.3	108	
Kenya	12.3 ± 5.5	10.9 ± 5.5	105	
Average	11.8 ± 5.3	10.8 ± 5.3	320	
Curre	15%			
Previ	10%			

Charcoal Stoves

Country	Average Thermal Efficiency [%]	Median Thermal Efficiency [%]	Ν
Ghana	20.7 ± 8.6	19.3 ± 8.6	112
Malawi	26.5 ± 9.7	26.7 ± 9.7	104
Kenya	19.5 ± 9.5	17.6 ± 9.5	106
Average	22.1± 9.8	21.4 ± 9.8	322
Curre	25%		
Previo	20%		

Implications & Recommendations

- In-field efficiency lies between UNFCCC defaults
- Representative of stove performance in field
 - Local cooking methods
 - Local dishes
 - Stove management methods
- Useful as a later stage metric for stove implementation
- Local efficiency values for traditional and improved stoves

Charcoal Value Chain Conversion Factor

Motivation for Charcoal Conversion Protocol

No current published protocol for charcoal conversion factor

10

Accounts for mass/energy losses along the charcoal value chain in addition to the kiln itself

Charcoal Conversion Methodology

- Measure 12 kilns in each country
 - Malawi and Ghana
- Track mass from the wood harvest site to useable charcoal in the stove
 - \circ $\,$ Mass of wood harvested/used to mass of charcoal created $\,$
 - \circ $\,$ $\,$ Mass of charcoal at the start and end of each stage $\,$

Results - Energy Yields & Losses

Normalized energy (kJ) at each stage of the charcoal supply chain in Malawi and Ghana.

- Blue represents potentially useful energy (energy yield)
- Yellow represents non-useful energy (energy loss).

Results - Conversion Factors

Accounting for only non-useful energy as losses

► Accounting for non-useful energy & potentially useful energy as losses

13

Conclusion & Implications

- Establishing a protocol to measure charcoal conversion factor
 - Complete charcoal value chain considered in conversion factors
 - 16.7% of mass losses (17.7% of energy losses) occur outside of kiln
- Accounting of useful energy
 - Can be considered as a loss or not in the conversion factors
- UNFCCC value is strongly conservative compared to results
- Better defined upstream emission impact
 - Factored into fuel change from charcoal

Acknowledgements

- C Quest Capital Project sponsor Sunfire Energy ٠
- CSIR
- KIRDI
- Field staff
- **Project** participants

For the full protocols visit: aprovecho.org/publications

15

Come to our breakout session!

For more detailed information on methodology and results

Today at 2:15 PM - Breakout Session 2B

Thank You!

17